Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status.
نویسندگان
چکیده
All cells have intricately coupled sensing and signaling mechanisms that regulate the cellular outcome following exposure to genotoxic agents such as ionizing radiation (IR). In the IR-induced signaling pathway, specific protein events, such as ataxia-telangiectasia mutated protein (ATM) activation and histone H2AX phosphorylation (gamma-H2AX), are mechanistically well characterized. How these mechanisms can be altered, especially by clinically relevant agents, is not clear. Here we show that hyperthermia, an effective radiosensitizer, can induce several steps associated with IR signaling in cells. Hyperthermia induces gamma-H2AX foci formation similar to foci formed in response to IR exposure, and heat-induced gamma-H2AX foci formation is dependent on ATM but independent of heat shock protein 70 expression. Hyperthermia also enhanced ATM kinase activity and increased cellular ATM autophosphorylation. The hyperthermia-induced increase in ATM phosphorylation was independent of Mre11 function. Similar to IR, hyperthermia also induced MDC1 foci formation; however, it did not induce all of the characteristic signals associated with irradiation because formation of 53BP1 and SMC1 foci was not observed in heated cells but occurred in irradiated cells. Additionally, induction of chromosomal DNA strand breaks was observed in IR-exposed but not in heated cells. These results indicate that hyperthermia activates signaling pathways that overlap with those activated by IR-induced DNA damage. Moreover, prior activation of ATM or other components of the IR-induced signaling pathway by heat may interfere with the normal IR-induced signaling required for chromosomal DNA double-strand break repair, thus resulting in increased cellular radiosensitivity.
منابع مشابه
Requirement of ATM in phosphorylation of the human p53 protein at serine 15 following DNA double-strand breaks.
Microinjection of the restriction endonuclease HaeIII, which causes DNA double-strand breaks with blunt ends, induces nuclear accumulation of p53 protein in normal and xeroderma pigmentosum (XP) primary fibroblasts. In contrast, this induction of p53 accumulation is not observed in ataxia telangiectasia (AT) fibroblasts. HaeIII-induced p53 protein in normal fibroblasts is phosphorylated at seri...
متن کاملThe PBAF chromatin remodeling complex represses transcription and promotes rapid repair at DNA double-strand breaks
Transcription in the vicinity of DNA double-strand breaks (DSBs) is suppressed via a process involving ataxia telangiectasia mutated protein (ATM) and H2AK119 ubiquitylation.(1) We discuss recent findings that components of the Polybromo and Brahma-related gene 1 (BRG1)-associated factor (PBAF) remodeling complex and the polycomb repressive complex (PRC1/2) are also required.(2) Failure to acti...
متن کاملDefective Mre11-dependent activation of Chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks.
The Mre11.Rad50.Nbs1 (MRN) complex binds DNA double strand breaks to repair DNA and activate checkpoints. We report MRN deficiency in three of seven colon carcinoma cell lines of the NCI Anticancer Drug Screen. To study the involvement of MRN in replication-mediated DNA double strand breaks, we examined checkpoint responses to camptothecin, which induces replication-mediated DNA double strand b...
متن کاملEarly events in the mammalian response to DNA double-strand breaks.
Physical and chemical agents that induce DNA double-strand breaks (DSBs) are among the most potent mutagens. The mammalian cell response to DSB comprises a highly co-ordinated, yet complex network of proteins that have been categorized as sensors, signal transducers, mediators and effectors of damage and repair. While this provides an accessible classification system, review of the literature i...
متن کاملHuman cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins.
The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 7 شماره
صفحات -
تاریخ انتشار 2007